Abstract
Background. Metals used for the manufacture of various implants for traumatology have all the necessary mechanical properties, but these materials are able to oxidize. In comparison, carbon has excellent biocompatibility. Carbon-carbon composite material (CCCM) is 2-4 times lighter than a similar metal implant, has a stiffness and modulus of elasticity close to similar indicators of a human bone, not prone to the effect of fatigue stress, and is characterized by chemical resistance in the body and high biocompatibility.
Objective. The purpose of this work was to evaluate the features of bone regeneration according to pathomorphological analysis in an experiment on animals.
Material and Methods. Carbon-carbon composite material for intromedular osteosynthesis after experimental fracture on white outbred male Wistar rats (n=18) was used in the experiment. A stainless steel rod (n=18) was used for control. Subsequently, rats of both groups were kept in standard vivarium conditions.
Results. Histological examination revealed that the use of implants with CCCM did not disrupt vascularization and angiogenesis in the fracture zones. During the analysis of the contact of bone tissue and implant material, it was determined that in the larger area of the perimeter of the pin with CCCM, a newly formed bone was located directly on its surface, filling its irregularities. In the case of the use of stainless steel rods, a significant number of lymphocytes were accumulated around the newly formed blood vessels directly adjacent to small hemorrhages, which were always observed at the fracture site.
Conclusions. Regeneration of an experimental rat femur fracture after osteosynthesis with carbon-carbon composite implants did not differ significantly from fracture fusion after osteosynthesis with a stainless steel implant.
References
Mînzatu V, Davidescu CM, Negrea P, Ciopec M, Muntean C, Hulka I, Paul C, Negrea A, Duțeanu N. Synthesis, Characterization and Adsorptive Performances of a Composite Material Based on Carbon and Iron Oxide Particles. International journal of molecular sciences. 2019; 20(7), 1609. DOI: 10.3390/ijms20071609.
Beirami S, Nikkhoo M, Hassani K, Karimi A. A comparative finite element simulation of locking compression plate materials for tibial fracture treatment. Computer methods in biomechanics and biomedical engineering. 2020; 24(10), 1064–1072. DOI: 10.1080/10255842.2020.1867114.
Cofano F, Di Perna G, Monticelli M, Marengo N, Ajello M, Mammi M, Vercelli G, Petrone S, Tartara F, Zenga F, Lanotte M, Garbossa D. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new "carbon-strategy". Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia. 2020;75, 106–111. DOI: 10.1016/j.jocn.2020.03.013.
Delaney FT, Denton H, Dodds M, Kavanagh EC. Multimodal imaging of composite carbon fiber-based implants for orthopedic spinal fixation. Skeletal radiology. 2021; 50(5), 1039–1045. DOI: 10.1007/s00256-020-03622-6.
Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. European journal of oral sciences. 2017; 125(5), 315–337. DOI: 10.1111/eos.12364.
Samiezadeh S, Schemitsch EH, Zdero R, Bougherara H. Biomechanical Response under Stress-Controlled Tension-Tension Fatigue of a Novel Carbon Fiber/Epoxy Intramedullary Nail for Femur Fractures. Medical engineering & physics. 2020; 80, 26–32. DOI: 10.1016/j.medengphy.2020.04.001.
Nurettin D, Burak B. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery. 2018; 46(12), 2182–2189. DOI: 10.1016/j.jcms.2018.09.030.
Sun M, Shao H, Xu H, Yang X, Dong M, Gong J, Yu M, Gou Z, He Y, Liu A, Wang H. Biodegradable intramedullary nail (BIN) with high-strength bioceramics for bone fracture. Journal of materials chemistry. 2021; 9(4), 969–982. DOI: 10.1039/d0tb02423f.
Wang L, Li G, Ren L, Kong X, Wang Y, Han X, Jiang W, Dai K, Yang K, Hao Y. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process. International journal of nanomedicine. 2017; 12, 8443–8457. DOI: 10.2147/IJN.S146866.
Baba K, Mikhailov A, Sankai Y. Long-term safety of the carbon fiber as an implant scaffold material. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2019; 1105–1110. DOI: 10.1109/EMBC.2019.8856629.
Lang A, Schulz A, Ellinghaus A, Schmidt-Bleek K. Osteotomy models - the current status on pain scoring and management in small rodents. Laboratory animals. 2016; 50(6), 433–441. DOI: 10.1177/0023677216675007.
Дедух НВ, Карпинский МЮ, Чжоу Л, Малышкина СВ. Регенерация и механическая прочность кости в условиях имплантации углеродного материала. Ортопедия, травматология и протезирование. 2016; 3:41–47. DOI: 10.15674/0030-59872016341-47.
Dedukh NV, Karpinsky MU, Zhou L, Malyshkina SV. Regeneration and mechanical strength of bone in conditions of implantation of carbon material. Orthopedics, traumatology and prosthetics. 2016; 3:41–47. DOI: 10.15674/0030-59872016341-47. [in Russian]
Корж М, Дедух Н, Тяжелов О, Чжоу Л. Экспериментально-клиническое исследование применения углеродных биоматериалов в ортопедии и травматологии (обзор литературы). Ортопедия, травматология и протезирование. 2017; (2), 114–121. DOI: 10.15674/0030-598720172114-121.
Korzh M, Dedukh N, Tyazhelov O, Zhou L. Experimental and clinical study of the application of carbon biomaterials in orthopedics and traumatology (literature review). Orthopedics, traumatology and prosthetics. 2017; (2), 114–121. DOI: 10.15674/0030-598720172114-121. [in Russian]
Kraus T, Fischerauer S, Treichler S, Martinelli E, Eichler J, Myrissa A, Zötsch S, Uggowitzer PJ, Löffler JF, Weinberg AM. The influence of biodegradable magnesium implants on the growth plate. Acta biomaterialia. 2018; 66, 109–117. DOI: 10.1016/j.actbio.2017.11.031.
Wu XQ, Wang D, Liu Y, Zhou JL. Development of a tibial experimental non-union model in rats. Journal of orthopaedic surgery and research. 2021; 16(1), 261. DOI: 10.1186/s13018-021-02408-3.
Teuben M, Hofman M, Shehu A, Greven J, Qiao Z, Jensen KO, Hildebrand F, Pfeifer R, Pape HC. The impact of intramedullary nailing on the characteristics of the pulmonary neutrophil pool in rodents. International orthopaedics. 2020; 44(3), 595–602. DOI: 10.1007/s00264-019-04419-6.
Shiels SM, Bouchard M, Wang H, Wenke JC. Chlorhexidine-releasing implant coating on intramedullary nail reduces infection in a rat model. European cells & materials. 2018; 35, 178–194. DOI: 10.22203/eCM.v035a13.
Cai M, Liu H, Jiang Y, Wang J, Zhang S. A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloids and surfaces. B, Biointerfaces. 2019; 183, 110445. DOI: 10.1016/j.colsurfb.2019.110445.
Wong RM, Thormann U, Choy MH, Chim YN, Li MC, Wang JY, Leung KS, Cheng JC, Alt V, Chow SK, Cheung WH. A metaphyseal fracture rat model for mechanistic studies of osteoporotic bone healing. European cells & materials. 2019; 37, 420–430. DOI: 10.22203/eCM.v037a25.
Danoff JR, Aurégan JC, Coyle RM, Burky RE,Rosenwasser MP. Augmentation of Fracture Healing Using Soft Callus. Journal of orthopaedic trauma. 2016; 30(3), 113–118. DOI: 10.1097/BOT.0000000000000481.
Neagu TP, Ţigliş M, Popp CG, Jecan CR. Histological assessment of fracture healing after reduction of the rat femur using two different osteosynthesis methods. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie. 2016; 57(3), 1051–1056.
Mataliotakis GI, Tsouknidas A, Panteliou S, Vekris MD, Mitsionis GI, Agathopoulos S, Beris AE. A new, low cost, locking plate for the long-term fixation of a critical size bone defect in the ratfemur: in vivo performance, biomechanical and finite element analysis. Bio-medical materials and engineering. 2015; 25(4), 335–346. DOI: 10.3233/BME-151540.
This work is licensed under a Creative Commons Attribution 4.0 International License.