Microflora of Secretions in a Surgical Hospital of Orthopedics and Traumatology Profile for 2021-2023 (SI “ITO NAMS of Ukraine”)
ARTICLE PDF (Українська)

Keywords

infectious complications
microflora of secretions
spectrum
polyresistance
orthopedic and trauma patients

How to Cite

Liutko, O., Vitrak, K., Didenko, S., & Melnyk , K. (2024). Microflora of Secretions in a Surgical Hospital of Orthopedics and Traumatology Profile for 2021-2023 (SI “ITO NAMS of Ukraine”). TERRA ORTHOPAEDICA, (2(121), 17-23. https://doi.org/10.37647/2786-7595-2024-121-2-17-23

Abstract

Summary. Healthcare-associated infections (HAIs), namely, surgical site infections, early postoperative and subsequent in-hospital infections, are the most common undesirable phenomenon in the world. According to statistics, at least one case of HAIs is diagnosed in every 100 hospitalized patients in hospitals of 7 developed and 15 other countries of the world at any given time. The occurrence of such complications during the treatment of a patient in a hospital leads to the need of additional diagnostic tests, additional courses of antibiotics, and unplanned surgical intervention. Worsening of the prognosis of treatment may occur due to the formation of the so-called resistant microflora in such patients, with a real probability of spreading the infection in the hospital. Prevention of HAIs in practice occurs through planned infection control in operating rooms and procedure rooms in clinical departments and qualified timely diagnostic work of certified microbiological laboratories in hospitals.

Objective. The objective of the study was to determine the spectrum of microflora of secretions for three years (2021-2023) in orthopedic and trauma patients due to changes in modern injuries received more often because of military aggression and to propose the identified differences as criteria for prescribing antibacterial drugs in complex inpatient treatment. The work shows that over the past three years (2021-2023), the ratio of gram-positive and gram-negative microorganisms in the study material almost did not change and averaged 1.65. The peculiarity of the analyzed period was an increase in the number of methicillin-resistant staphylococci by 1.3 times. The spectrum of gram-negative clinical strains has changed, namely, the number of Kl.pneumoniae clinical strains with a high level of polyresistance has increased by 2.5 times. The obtained data made it possible to identify the spectrum of microflora of secretions in orthopedic and trauma patients with modern infectious complications, which prompts us to make changes in the standards of antibacterial treatment protocols, and to plan the needs for certain antibiotics in hospitals with personalization of their prescription to improve the effectiveness of treatment and reduce the risk of development of antimicrobial resistance.

https://doi.org/10.37647/2786-7595-2024-121-2-17-23
ARTICLE PDF (Українська)

References

Ikuta KS, Swetschinski LR, Aguilar GR, Sharara F, Mestrovic T, Gray AP, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019 GBD 2019. Antimicrobial Resistance Collaborators Department of Preventive Medicine and Public HealthDepartment of PediatricsOriginal. Lancet. 2022 Dec 17;400(10369):2221-48. DOI: 10.1016/S0140-6736(22)02185-7.

Abdul-Aziz MH, Alffenaar J-WC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Int. Care Med. 2020;46(6):1127-53. DOI: 10.1007/s00134-020-06050-1

Фомін ОО, Ковальчук ВП, Фоміна НС, Жемба МД, Доброванов О, Кралинський К. Лікування гнійно-запальних ускладнень при бойовій вогнищевій травмі. Сучасні медичні технології. 2019;2(41):34-39.

Fomin OO, Kovalchuk VP, Fomina NS, Zhemba MD, Dobrovanov O, Kralynskyi K. Treatment of purulent-inflammatory complications in focal combat trauma. Suchasni medychni tekhnolohii. 2019;2(41):34-39. [in Ukrainian].

Kuechl R, Tschudin-Sutter S, Morgenstern M, Dangel M, Egli A, Nowakowsri A, et al. Time-dependent differences in management and microbiology of orthopaedic internal fixation associated infections: an jbservational prospective study with 229 patients. Clin Microbiol Infect. 2019 Jan;25(1):76-81. DOI: 10.1016/j.cmi.2018.03.040.

Лютко О.Б., Вітрак К.В., Митякіна І.Ю. Сучасні підходи до антибіотикотерапії в травматології та ортопедії. Актуальна інфектологія 2021;9(4):75

Liutko O.B., Vitrak K.V., Mytiakina I.Iu. Modern approaches to antibiotic therapy in traumatology and orthopedics. Aktualna infektolohiia 2021;9(4):75 [in Ukrainian].

«Про організацію профілактики інфекцій та інфекційного контролю в закладах охорони здоров᾿я та установах/закладах надання соціальних послуг захисту населення». Наказ МОЗ України; 03.08.2021. № 1614

"On the organization of infection prevention and infection control in health care institutions and institutions/institutions providing social services for the protection of the population". Order of the Ministry of Health of Ukraine; August 3, 2021. No. 1614 [in Ukrainian].

Стандарт медичної допомоги «Раціональне застосування антибактеріальних і антифунгальних препаратів з лікувальною та профілактичною метою». Наказ МОЗ України; 23.08.2023. № 1513.

Standard of medical care "Rational use of antibacterial and antifungal drugs for therapeutic and preventive purposes". Order of the Ministry of Health of Ukraine; August 23, 2023. No. 1513. [in Ukrainian].

Tabah A, Bassetti M, Kollef MH, Zahar J-R, Paiva J-A, Timsit J-F, et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP).Intensive Care Med. 2020 Feb;46(2):245-65. DOI: 10.1007/s00134-019-05866-w

Umpleby H, Dushianthan A, Catton T, Saeed K. Antimicrobial stewardship programmes focused on de-escalation: a narrative review of efficacy and risks. J Emerg Crit Care Med [Internet]. July 2022;6:23. Available from: https://jeccm.amegroups.org/article/view/7515/html DOI: 10.21037/jeccm-22-6

Sixty-eighth World Health Assembly. Global action plan on antimicrobial resistance. WHO. 2015;WHA68.7:28. Available from: https://www.who.int/publications/i/item/9789241509763.

Loban' G, Faustova M, Dobrovolska O, Tkachenko P. War in Ukraine: incursion of antimicrobial resistance. Ir J Med Sci. 2023;192(6):2905-07. DOI: 10.1007/s11845-023-03401-x.

Фоміна НС, Фомін ОО, Ковальчук ВП, Асланян СА. Мікрофлора сучасної бойової рани та її чутливість до антибіотиків — що нового? Частина ІІ. Український медичний часопис. 2023;5(157):121-4. DOI: 10.32471/umj.1680-3051.157.247288

Fomina NS, Fomin OO, Kovalchuk VP, Aslanyan SA. The microflora of a modern combat wound and its sensitivity to antibiotics - what's new? Part II. Ukrainian medical journal. 2023;5(157):121-4 [in Ukrainian].

Ковальчук ВП, Кондратюк ВМ. Динаміка видового складу мікрофлори бойових (вогнепальних та мінно-вибухових) ран кінцівок, одержаних під час антитерористичної операції на сході України у 2014 році. Хірургія України. 2016;2:13-18.

Kovalchuk VP, Kondratyuk VM. Dynamics of the species composition of the microflora of combat (fire and mine-explosive) wounds of the limbs, received during the anti-terrorist operation in the east of Ukraine in 2014. Surgery of Ukraine. 2016;2:13-18. [in Ukrainian].

Хоменко ІП, Цема ЄВ, Шаповалов ВЮ, Тертишний СВ, Шкляревич ПО. Динаміка мікробної контамінації вогнепальної рани під час комплексного хірургічного лікування. Хірургія України. 2018;1:7-13.

Khomenko IP, Tsema EV, Shapovalo VYu, Tertyshnyi SV, Shkliarevych PO. Dynamics of microbial contamination of a gunshot wound during complex surgical treatment. Surgery of Ukraine. 2018;1:7-13 [in Ukrainian].

Kovalchuk V, Kondratiuk V. Bacterial flora of combat wounds from eastern Ukraine and time‑specified changes of bacterial recovery during treatment in Ukrainian military hospital [Internet]. BMC Research Notes. 2017;10:152 DOI:10.1186/s13104-017-2481-4.

Denysko TV, Nazarchuk OA, Gruzevskyi O, Bahniuk NÀ, Dmytriiev DV, Chornopyschuk RM, et al. In vitro evaluation of the antimicrobial activity of antiseptics against clinical Acinetobacter baumannii strains isolated from combat wounds [Internet]. Front Microbiol. 2022 Oct 4:13:932467. DOI: 10.3389/fmicb.2022.932467.

Kondratiuk V, Jones BT, Kovalchuk V, Kovalenko I, Ganiuk V, Kondratiuk O, et al. Phenotypic and genotypic characterization of antibiotic resistance in military hospital-associated bacteria from war injuries in the Eastern Ukraine conflict between 2014 and 2020. J Hosp Infect. 2021;112:69–76. DOI: 10.1016/j.jhin.2021.03.020.

Хайтович М.В., Темірова О.А., Полякова Д.С. Індивідуалізація антимікробної терапії з метою мінімізації розвитку резистентності. Укр. Мед. Часопис. 2023;3(155):5-7. DOI:10.32471/umj.1680-3051.155.244011

Khaitovych M.V., Temirova O.A., Poliakova D.S. Indyvidualizatsiia antymikrobnoi terapii z metoiu minimizatsii rozvytku rezystentnosti. Ukr. Med. Chasopys. 2023;3(155):5-7. DOI:10.32471/umj.1680-3051.155.244011

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.