Clinical Genealogical and Epigenetic Examination of Patients with Juvenile Epiphysiolysis of the Femoral Head
ARTICLE PDF (Українська)


slipped capital femoral epiphysis; microRNA; genetic and genealogical research.

How to Cite

Holiuk, Y., Kabatsii, M., Filipchuk, V., Melnyk, M., & Lukianova, N. (2021). Clinical Genealogical and Epigenetic Examination of Patients with Juvenile Epiphysiolysis of the Femoral Head. Herald of Orthopaedics, Traumatology and Prosthetics, (2(109), 18-24.


Summary. Slipped capital femoral epiphysis (SCFE) is a multifactorial disease caused by a number of factors, and each of them can be triggered in its occurrence. Modern research is increasingly pointing to the leading role of epigenetic structures in the origin and course of this group of diseases. In recent years, the most promising area is the study of the role of microRNAs as an epigenetic factor that plays a leading role in the pathogenesis of multifactorial diseases.

Objective: to develop a methodology for genetic genealogical examination of patients with juvenile epiphysiolysis of the femoral head.

Materials and Methods. The study material was 26 patients with SCFE (15 girls and 11 boys) in different periods of sexual development: prepuberty – 7 patients, induction of puberty – 12 patients, and puberty and postpuberty – 7 patients. A questionnaire developed by us was used for clinical and genealogical research of the patients. The material for the epigenetic study, namely the study of microRNA-21 expression in patients with SCFE, was venous blood.

Results. The expression of microRNA-21 in the blood of patients with SCFE is different (average expression is 0.86 conventional units) from those of healthy donors (average 0.393 conventional units) of the same age (p<0.05). Analysis of dependence on the period of sexual development revealed statistical differences in indicators depending on the group (p<0.05). No dependence of the level of microRNA-21 expression in patients with SCFE on sex and the period before or after surgery (p>0.05) was revealed. The obtained data on the probability of the influence of hereditary factors on the occurrence of SCFE are statistically significant (p<0.05).

Conclusions. Our results of epigenetic and clinical genealogical research of patients with SCFE showed a high probability of influence of hereditary and epigenetic factors on the occurrence and course of this disease.
ARTICLE PDF (Українська)


Elbehidy RM, Youssef DM, El-Shal AS, Shalaby SM, Sherbiny HS, Sherief LM, et al. MicroRNA–21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Molecular Immunology. 2016;71:107-14. DOI: 10.1016/j.molimm.2015.12.015.

Ameis D, Khoshgoo N, Iwasiow BM, Snarr Ph, Keijzer R. MicroRNAs in Lung Development and Disease. Paediatric Respiratory Reviews. 2017;22:38-43. DOI: 10.1016/j.prrv.2016.12.002.

Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases – Complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016;5(432):83-95. DOI: 10.1016/j.mce.2015.10.015.

MiRNA (microRNA) Introduction [document on the Internet]. Available from:

Kopańska M, Szala D, Czech J, Gabło N, Gargasz K, Trzeciak M, et al. MiRNA expression in the cartilage of patients with osteoarthritis. J Orthop Surg Res. 2017;12:51-7. DOI: 10.1186/s13018-017-0542-y.

Le LT, Swingler TE, Clark IM. The role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 2013;65(8):1963-74. DOI: 10.1002/art.37990.

Barter MJ, Woods S, Young DA. MicroRNA in Chondrogenesis, Cartilage and Osteoarthritis. Current Rheumatology Reviews. 2012;8(2):89-97.

Zhang M, Lygrisse K, Wang J. Role of MicroRNA in Osteoarthritis. J. Arthritis. 2017;6(2):239-50. DOI: 10.4172/2167-7921.1000239.

Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis and Cartilage. 2016;24(4):573-80. DOI: 10.1016/j.joca.2015.10.018.

Asahara H. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis. J Bone Metab. 2016;23(3):121-7.

Chen D, Shen J, Hui T. Epigenetic and microRNA regulation during osteoarthritis development. F1000Res. 2015;(4):1092-1101.

Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagdet M, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;(64):1909-19. DOI: 10.1002/art.34314.

Hong E, Reddi AH. MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering. Tissue Eng Part B Rev. 2012;(18):445-53. DOI: 10.1089/ten.TEB.2012.0116.

Dong S, Yang B, Guo H, Kang F. MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun. 2012;(418):587-91. DOI: 10.1016/j.bbrc.2012.01.075.

Zhang Y, Jia J, Yang S, Liu X, Ye S, Tian H. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Experimental and Molecular Medicine. 2014;(46): 79-85. DOI: 10.1038/emm.2013.152.

Klinge CM. Estrogen Regulation of MicroRNA Expression. Curr. Genomics. 2009;10(3):169-83. DOI: 10.2174/138920209788185289.

Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, et al.Mechanisms of GDF-5 action during skeletal development. Development. 1999;(126):1305-15. DOI: 10.1242/dev.126.6.1305.

Baur ST, Mai JJ, Dymecki SM. Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. 2000;(127): 605-19. PMID: 10631181.

Loughlin J. Genetic indicators and susceptibility to osteoarthritis. Br J Sports Med. 2011;(45):278-82. DOI:10.1136/bjsm.2010.081059.

Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007;(39):529-33. DOI: 10.1038/2005.

Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011;(70):873-5. DOI: 10.1136/ard.2010.134155.

Francis-West PH, Parish J, Lee K, Archer CW. BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res. 1999;(296):111-9. DOI: 10.1007/s004410051272.

Kleinsteuber K, Heesch K, Schattling S, Kohns M, Sander-Jülch C, Walzl G, et al. Decreased Expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4 + T Cells and Peripheral Blood from Tuberculosis Patients. PLoS One. 2013;8(4):601-9. DOI: 10.1371/journal.pone.0061609.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.