Functional Results of Cephalomedullary Nail Osteosynthesis of Transtrochanteric Fractures in Elderly Patients
ARTICLE PDF (Українська)

Keywords

transtrochanteric fracture; femur; old age; PFNA nail; FRAX.

How to Cite

Sulyma, V., Valovina, Y., Sabsai, O., Makarov, V., Valovina, N., Bihun, R., & Kuz , U. (2021). Functional Results of Cephalomedullary Nail Osteosynthesis of Transtrochanteric Fractures in Elderly Patients. TERRA ORTHOPAEDICA, (3(110), 28-34. https://doi.org/10.37647/0132-2486-2021-110-3-28-34

Abstract

Summary. Relevance. Despite many surgical techniques that use modern metal fixators, treatment of elderly patients with fractures of the proximal part of the hip still remains relevant.

Objective: to evaluate the functional results of surgical treatment of elderly patients with transtrochanteric fractures of the femur using a cephalomedullary locking nail (PFNA).

Materials and Methods. The study involved 193 elderly patients (mean age 76.2±10.3 years) with transtrochanteric fractures of the femur type 31 A1-A2.1-1.3 (AO/OTA) after osteosynthesis by PFNA cephalomedullar fixator. The functional outcome of the treatment was determined after 1, 3, 12, and 36 months by Harris Hip Score (HHS), radiographic signs of bone union, and the presence of complications. The risk of recurrent trochanteric fractures over the next 10 years was calculated by adapted FRAX scale.

Results. Positive changes were found by HSS, in the dynamics: 51.6 after 1 month, 60.2 after 3 months, 79.7 after 12 months, and 84.4 after 36 months. Within 6 months after the surgery, the following changes were found: secondary displacement of bone fragments with the “cut-out” eruption of the cervical blade in 2.3% (n=3), migration of the cervical component outward in 4.7% (n=6), and inflammation of surgical wound in 3.9% (n=5) of cases. Retrospectively, the average FRAX score was assessed (22.12±1.76).

Conclusions. Stable functional osteosynthesis of transtrochanteric fractures of the femur using PFNA combined with early dosed loading on the injured limb allowed to obtain satisfactory functional results in 95.4% of cases. Secondary displacement of bone fragments with the “cut-out” effect requires a detailed analysis of all possible endo- and exogenous factors and identification of the most significant ones. The 10-year risk of recurrent fractures in patients with trochanteric fractures significantly increases over the age of 70, especially in females, and accounts for the majority of osteoporotic fractures.

https://doi.org/10.37647/0132-2486-2021-110-3-28-34
ARTICLE PDF (Українська)

References

Veronese N, Maggi S. Epidemiology and social costs of hip fracture. Injury. 2018;49(8):1458-60. DOI: 10.1016/j.injury.2018.04.015.

Povoroznyuk VV, Grygorieva NV, Kanis JA, McCloskey EV, Johansson H, Strafun SS, et al. Epidemiology of Hip Fractures in Two Regions of Ukraine. Journal of Osteoporosis. 2018:1-6. DOI: 10.1155/2018/7182873.

Socci AR, Casemyr NE, Casemyr NE, Leslie MP, Baumgaertner MR. Implant options for the treatment of intertrochanteric fractures of the hip: Rationale, evidence, and recommendations. Bone Joint J. 2017;99(1):128-133. DOI: 10.1302/0301-620X.99B1.BJJ-2016-0134.R1.

Sandmann G, Biberthaler P. Pertrochanteric femoral fractures in the elderly. Unfallchirurg. 2015;118(5):447-60. DOI: 10.1007/s00113-015-0007-x.

Elsalmawy AA, Al-Ali NS, Yaghi Y, Assaggaf H, Maalouf Gh, Sadat-Ali M, et al. Middle East experience from the Asia And Latin America Fracture Observational Study (ALAFOS): Baseline characteristics of postmenopausal women with osteoporosis using teriparatide. J Int Med Res. 2020 Aug;48(8):1-16. DOI: 10.1177/0300060520940855.

Hadji P, Schweikert B, Kloppmann E, Gille P, Joeres L, Toth E, et al. Osteoporotic fractures and subsequent fractures: imminent fracture risk from an analysis of German real-world claims data. Arch Gynecol Obstet. 2021 Sep;304(3):703-12. DOI: 10.1007/s00404-021-06123-6.

Fernandez MA, Griffin XL, Costa ML. Management of hip fracture. British Medical Bulletin. 2015;115:165-72. DOI: 10.1016/S0140-6736(06)68891-0.

Mo DKC, Lau KKM, Fung DMY, Ma BHM, Lau TFO, Law ShW. Does additional weekend and holiday physiotherapy benefit geriatric patients with hip fracture? - A case-historical control study. Hong Kong Physiother J. 2021 Dec;41(2):109-18. DOI: 10.1142/S1013702521500104.

Li H, Wang Q, Dai G.-G, Peng H. PFNA vs. DHS helical blade for elderly patients with osteoporotic femoral intertrochanteric fractures. Eur Rev Med Pharmacol Sci. 2018;22(1):1-7. DOI: 10.26355/eurrev_201807_15346.

Müller F, Doblinger M, Kottmann T, Füchtmeier B. PFNA and DHS for AO/OTA 31-A2 fractures: radiographic measurements, morbidity and mortality. Eur J Trauma Emerg Surg. 2020;46:947-53. DOI: 10.1007/s00068-019-01251-w.

Shou-Guo H, Bo Ch, Yong Zhang, Feng-Feng Nie, Liang J, Ming L, et al. Comparison of the Clinical Effectiveness of PFNA, PFLCP, and DHS in Treatment of Unstable Intertrochanteric Femoral Fracture. American Journal of Therapeutics. 2017;24(6):659-66. DOI: 10.1097/MJT.0000000000000346.

Zhang H, Zhu X, Pei G, Zeng X, Zhang N, Xu P, et al. A retrospective analysis of the InterTan nail and proximal femoral nail anti-rotation in the treatment of intertrochanteric fractures in elderly patients with osteoporosis: A minimum follow-up of 3 years. J. Orthop. Surg. Res. 2017;12:1-8. DOI: 10.1186/s13018-017-0648-2.

Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselarda H, Khiami F. Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop. Traumatol. Surg. Res. 2018;104:1183-87. DOI: 10.1016/j.otsr.2018.06.021.

Murena L, Moretti A, Meo F, Saggioro E, Barbati G, Ratti Ch, et al. Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: A retrospective study of 813 patients Arch Orthop. Trauma Surg. 2018;138:351-9. DOI: 10.1007/s00402-017-2863-z.

Leicht H, Gaertner T, Günster C, Halder AM, Hoffmann R, Jeschke E, et al. Time to Surgery and Outcome in the Treatment of Proximal Femoral Fractures. Dtsch Arztebl Int. 2021 Jul 2;118(26):454-61. DOI: 10.3238/arztebl.m2021.0165.

Nguyen BN, Hoshino H, Togawa D, Matsuyama Yu. Cortical Thickness Index of the Proximal Femur: A Radiographic Parameter for Preliminary Assessment of Bone Mineral Density and Osteoporosis Status in the Age 50 Years and Over Population. Clin Orthop Surg. 2018;10(2):149-56. DOI: 10.4055/cios.2018.10.2.149.

Povoroznyuk VV, Grygorieva NV, Kanis JA, McCloskey EV, Johansson H, Harvey NC, et al. Epidemiology of hip fracture and the development of FRAX in Ukraine. Archives of Osteoporosis. 2017;12:53. DOI: 10.1007/s11657-017-0343-2.

Ma J, Kuang M, Fan Z, Xing F, Zhao Y, Zhang L, et al. Comparison of clinical outcomes with InterTan vs Gamma nail or PFNA in the treatment of intertrochanteric fractures: A meta-analysis. Sci Rep. 2017;7:1-9. DOI: 10.1038/s41598-017-16315-3.

Povoroznyuk V, Grygorieva N, Kanis J. Ukrainian Version of FRAX: From Creation to Validation. Pain, joints, spine. 2017;3(23):5-14. DOI:10.22141/2224-1507.3.23.2016.85000.

Niu E, Ms AY, Harris AHS, Bishop J. Which fixation device is preferred for surgical treatment of intertrochanteric hip fractures in the United States? A survey of orthopaedic surgeons. Clin. Orthop. Relat. Res. 2015;473:3647-55. DOI: 10.1007/s11999-015-4469-5.

Matre K, Havelin LI, Gjertsen JE, Vinje T, Espehaug B, Fevang JM. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury. 2013;44(6):735-42. DOI: 10.1016/j.injury.2012.12.010.

Yu C, Jiang LH, Cai DW, Wu J, Qin J. PFNA and InterTAN intramedullary nailing in elderly patients with femoral intertrochanteric fractures: a Meta analysis. Zhongguo Gu Shang. 2019;32(2):120-9. DOI: 10.3969/j.issn.1003-0034.2019.02.006.

Nie SB, Zhao YP, Li JT, Zhao Z, Zhang Z, Zhang L-C, et al. Medial support nail and proximal femoral nail antirotation in the treatment of reverse obliquity inter-trochanteric fractures (Arbeitsgemeinschaft fur Osteosynthesfrogen/Orthopedic Trauma Association 31-A3.1): a finite-element analysis. Chin Med J (Engl). 2020 Nov 20;133(22):2682-7. DOI: 10.1097/CM9.0000000000001031.

Stramazzo L, Ratano S, Monachino F, Pavana D, Rovere G, Camarda L. Cement augmentation for trochanteric fracture in elderly: A systematic review. J Clin Orthop Trauma. – 2021;15:65-70. DOI: 10.1016/j.jcot.2020.10.034.

Lang NW, Breuer R, Beiglboeck H. Munteanu А, Hajdu S, Windhager R, et al. Migration of the Lag Screw after Intramedullary Treatment of AO/OTA 31.A2.1-3 Pertrochanteric Fractures Does Not Result in Higher Incidence of Cut-Outs, Regardless of Which Implant Was Used: A Comparison of Gamma Nail with and without U-Blade (RC) Lag Screw and Proximal Femur Nail Antirotation (PFNA). J Clin Med. 2019;8(5):615. DOI: 10.3390/jcm8050615.

Kang JS, Kwon YT, Suh YJ, Lee TJ, Ryu DJ. Outcomes of U-Blade Lag Screw for Cephalomedullary Fixation of Unstable Trochanteric Femur Fractures: A Case Control Study. Geriatric Orthopaedic Surgery & Rehabilitation. 2020;11:1-8. DOI: 10.1177/2151459320979975.

Choi K, Kim Y, Zhou S, Hwang J. Failure of a Rotation Control Gamma 3 Lag Screw Used to Treat a Trochanteric Fracture. Hip Pelvis. 2018;30(2):129-33. DOI: 10.5371/hp.2018.30.2.129.

Yoo J, Kim S., Choi J, Hwang J. Gamma 3 U-Blade lag screws in patients with trochanteric femur fractures: are rotation control lag screws better than others? Journal of Orthopaedic Surgery and Research. 2019;14(440):1-9. DOI: 10.1186/s13018-019-1427-z.

Kammerlander C, Hem ES, Klopfer T, Gebhard F, Sermon A, Dietrich M, et al. Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA) - A multicentre randomized controlled trial. Injury. 2018;49(8):1436-44. DOI: 10.1016/j.injury.2018.04.022.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.