Abstract
Background. The prognosis of recovery of the distal muscles (dM) of the upper extremity (UE) in complete brachial plexus injuries (cBPI) after any selective nerve transfer (NT) is poor. Free functioning muscle transfer (FFMT) is deprived of the disadvantages of NT. By combining NT and FFMT one can achieve recovery of the global functionality of UE in cBPI.
Objective: to define theoretical and clinical preconditions for each stage (S) of the segmental reconstruction of UE in cBPI.
Materials and Methods. 38 years old male patient 3 months after cBPI underwent NT (S1) of the phrenic to musculocutaneous nerve; branches of the spinal accessory nerve were transferred to axillary and suprascapular nerves. 36 months after S1 the patient underwent wrist (WA) and trapeziometacarpal arthrodesis (TMCA) (S2). 43 months after S1 the patient underwent FFMT of the gracilis muscle (S3). Clinical and neurological, electroneuromyographic (EMG), and X-ray examinations were carried out within the expected time to achieve the expected result after the corresponding stages of reconstruction. Results. 26 months after S1 m. biceps brachii and m. deltoideus recovered to M4; m. supra-infraspinatus ineffectively recovered to M3. A stable arthrodesis effect in WA and TMCA was achieved after 42 months in general. Poor clinical and EMG recovery of the gracilis muscle (S3) within the expected time led to indefinite postponement of S4, with clinical and EMG control every 3 months.
Conclusions. Clinical signs of functional recovery cannot be a prerequisite for using a primary recipient nerve as a secondary donor nerve; the number of motor fibers in the donor nerve must be confirmed by objective data of morphometric and histochemical express methods; theoretical preconditions of the “sitting donor” technique appear to be the most promising in terms of recovery of dM of UE.
References
Moore AM (2014) Nerve transfers to restore upper extremity function: a paradigm shift. Front. Neurol.5:40. DOI: 10.3389/ fneur.2014.00040.
Domeshek LF, Novak CB, Patterson JMM, et al. Nerve Transfers-A Paradigm Shift in the Reconstructive Ladder. Plast Reconstr Surg Glob Open. 2019;7(6):e2290. Published 2019 Jun 25. DOI: 10.1097/GOX.0000000000002290.
Chuang DC. Brachial plexus injury: nerve reconstruction and functioning muscle transplantation. Semin Plast Surg. 2010;24(1):57-66. DOI: 10.1055/s-0030-1253242.
Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci. 2020;21(22):8652. Published 2020 Nov 17. DOI: 10.3390/ijms21228652.
Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:698256. DOI: 10.1155/2014/698256.
Martin E, Senders JT, DiRisio AC, Smith TR, Broekman MLD. Timing of surgery in traumatic brachial plexus injury: a systematic review [published online ahead of print, 2018 May 1]. J Neurosurg. 2018;1-13. DOI: 10.3171/2018.1.JNS172068.
Delgado DA, Lambert BS, Boutris N, et al. Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. J Am Acad Orthop Surg Glob Res Rev. 2018;2(3):e088. Published 2018 Mar 23. DOI: 10.5435/JAAOSGlobal-D-17-00088.
Matthews WB. Aids to the examination of the peripheral nervous system. J Neurol Sci. 1977;33(1-2):299.
Hata A, Yamada Y, Tanaka R, et al. Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications. Korean J Radiol. 2021;22(4):634-651. DOI: 10.3348/kjr.2020.1136.
Siqueira MG, Martins RS. Surgical treatment of adult traumatic brachial plexus injuries: an overview. Arq Neuropsiquiatr. 2011;69(3):528-535. DOI: 10.1590/s0004- 282x2011000400023.
Chuang DC. Brachial plexus reconstruction based on the new definition of level of injury. Injury. 2008;39 Suppl 3:S23-S29. DOI: 10.1016/j.injury.2008.05.012.
Bahm J, Noaman H, Becker M: The dorsal approach to the suprascapular nerve in neuromuscular reanimation for obstetric brachial plexus lesions. Plast Reconstructive Surg, 115(1):240- 244, 2005.
Hayden RJ, Jebson PJ. Wrist arthrodesis. Hand Clin. 2005;21(4):631-640. DOI: 10.1016/j.hcl.2005.08.004.
Amadei F. Trapeziometacarpal arthrodesis. Hand Surg Rehabil. 2021;40S:S102-S105. DOI: 10.1016/j. hansur.2020.09.010.
Yang Y, Zou XJ, Fu G, et al. Neurotization of free gracilis transfer with the brachialis branch of the musculocutaneous nerve to restore finger and thumb flexion in lower trunk brachial plexus injury: an anatomical study and case report. Clinics (Sao Paulo). 2016;71(4):193-198. DOI: 10.6061/clinics/2016(04)03.
Gates DH, Walters LS, Cowley J, Wilken JM, Resnik L. Range of Motion Requirements for Upper-Limb Activities of Daily Living. Am J OccupTher. 2016;70(1):7001350010p1- 7001350010p10. DOI: 10.5014/ajot.2016.015487.
Chao AH, Lamp S. Current approaches to free flap monitoring. Plast Surg Nurs. 2014;34(2):52-58. DOI: 10.1097/ PSN.0000000000000037.
Strafun S.S. Kliniko-elektromiohrafichni stadii denervatsiino-reinnervatsiinoho protsesu u miazakh kintsivok pry ushkodzhenni peryferychnykh nerviv / S.S. Strafun, O.H. Haiko // Travma. — 2012. — T.13, No4. — S.121–127.
Schreiber JJ, Byun DJ, Khair MM, Rosenblatt L, Lee SK, Wolfe SW. Optimal axon counts for brachial plexus nerve transfers to restore elbow flexion. Plast Reconstr Surg. 2015;135(1):135e-141e. DOI: 10.1097/PRS.0000000000000795.
Luft M, Klepetko J, Muceli S, et al. Proof of concept for multiple nerve transfers to a single target muscle. Elife. 2021;10:e71312. Published 2021 Oct 1. DOI: 10.7554/ eLife.71312.
Bahm J, Ocampo-Pavez C. Free functional gracilis muscle transfer in children with severe sequelae from obstetric brachial plexus palsy. J Brachial Plex Peripher Nerve Inj. 2008;3:23. Published 2008 Oct 30. DOI: 10.1186/1749-7221-3-23.
Meyer R, Claussen GC, Oh SJ. Modified trichrome staining technique of the nerve to determine proximal nerve viability. Microsurgery. 1995;16(3):129-132. DOI: 10.1002/ micr.1920160302.
Hattori Y, Doi K, Kaneko K, Heong TS. Intraoperative measurement of choline acetyltransferase activity to evaluate the functional status of donor nerve during reinnervated free muscle transfer: a preliminary report. J Hand Surg Am. 1998;23(6):1034-1037. DOI: 10.1016/S0363-5023(98)80011-7.
Nicoson MC, Franco MJ, Tung TH. Donor nerve sources in free functional gracilis muscle transfer for elbow flexion in adult brachial plexus injury. Microsurgery. 2017;37(5):377-382. DOI: 10.1002/micr.30120.
Saltzman EB, Krishnan K, Winston MJ, Das De S, Lee SK, Wolfe SW. A Cadaveric Study on the Utility of the Levator Scapulae Motor Nerve as a Donor for Brachial Plexus Reconstruction. J Hand Surg Am. 2021;46(9):812.e1-812.e5. DOI: 10.1016/j.jhsa.2020.11.022.
Gesslbauer B, Hruby LA, Roche AD, Farina D, Blumer R, Aszmann OC. Axonal components of nerves innervating the human arm. Ann Neurol. 2017;82(3):396-408. DOI: 10.1002/ ana.25018.
Mahmood B, Marshall D, Wolfe SW, Lee SK, Fufa DT. Anatomic evaluation of the obturator branch to the gracilis muscle to optimize its use as a free functional muscle transfer for elbow flexion reanimation. S50-S51The Journal of Hand Surgery. 2018;43.
Socolovsky M, Malessy M, Lopez D, Guedes F, Flores L. Current concepts in plasticity and nerve transfers: relationship between surgical techniques and outcomes. Neurosurg Focus. 2017;42(3):E13. DOI: 10.3171/2016.12.FOCUS16431.
Shen, Jun. (2022). Plasticity of the Central Nervous System Involving Peripheral Nerve Transfer. Neural Plasticity. 2022. 10.1155/2022/5345269.
This work is licensed under a Creative Commons Attribution 4.0 International License.