Анотація
Резюме. Керамічні поверхні вперше були використані як альтернатива поліетиленовим (PE) поверхням у тотальному ендопротезуванні суглобів приблизно через десять років після того, як сер Джон Чанлі представив вперше тотальне ендопротезування кульшового суглоба (THA) з метало-поліетиленовою парою тертя. Підхід Чанлі був заснований на наявності металевої ніжки, прикріпленої до кістки поліметилметакрилатним кістковим цементом, і ацетабулярному компоненті, виготовленому з поліетилену надвисокої молекулярної маси. Його роботи продемонстрували, що мікроскопічні часточки в суглобовій щілині від зносу поверхонь призводять до перипротезного запалення, остеолізу та розхитування компонентів імплантату. Створення поперечних зв’язків у поліетилені (крос-лінкований поліетилен) може зменшити зношування останнього, але воно також ставить під загрозу механічні властивості поліетилену. Відповідно, існує занепокоєння, пов’язане з потенційною крихкістю, якщо імплантати з поліетилену не розміщені оптимально. Крім того, менші частинки, утворені з крос-лінкованого поліетилену, можуть чинити підвищене навантаження на поверхню імплантату. Будь-яка технологія, яка може знизити швидкість зносу пар тертя при THA та тотальному ендопротезуванні колінного суглоба (TKA), потенційно здатна зменшити захворюваність і ризики, пов’язані з передчасною ревізійною операцією, спричиненої зносом. Покращена зносостійкість також дозволяє використовувати головки стегнової кістки великого діаметра в THA, що приводить до збільшення дуги руху та зменшення ризику вивиху протеза. Ідеальна пара тертя для THA і TKA могла б витримувати високе циклічне навантаження протягом кількох десятиліть, не зазнаючи корозії або деформації на модульних металевих конусах, і мала би доведену біологічну сумісність і стабільність матеріалу in vivo, а також наднизьку швидкість зносу. Пошук ідеальних пар тертя для тотального ендопротеза привів до розробки керамічних компонентів
Посилання
D'Antonio J, Capello W, Manley M, Naughton M, Sutton K. Alumina ceramic bearings for total hip arthroplasty: five-year results of a prospective randomized study. Clin OrthopRelat Res. 2005 Jul. (436):164-71. PMID: 15995436.
Kang BJ, Ha YC, Ham DW, Hwang SC, Lee YK, Koo KH. Third-generation alumina-on-alumina total hip arthroplasty: 14 to 16-year follow-up study. J Arthroplasty. 2015 Mar. 30 (3):411-5. DOI: 10.1016/j.arth.2014.09.020
Tai SM, Munir S, Walter WL, Pearce SJ, Walter WK, Zicat BA. Squeaking in large diameter ceramic-on-ceramic bearings in total hip arthroplasty. J Arthroplasty. 2015 Feb. 30 (2):282-5. DOI: 10.1016/j.arth.2014.09.010
Aoude AA, Antoniou J, Epure LM, Huk OL, Zukor DJ, Tanzer M. Midterm Outcomes of the Recently FDA Approved Ceramic on Ceramic Bearing in Total Hip Arthroplasty Patients Under 65 Years of Age. J Arthroplasty. 2015 Aug. 30 (8):1388-92. DOI: 10.1016/j.arth.2015.03.028
Hamadouche M, Boutin P, Daussange J, Bolander ME, Sedel L. Alumina-on-alumina total hip arthroplasty: a minimum 18.5-year follow-up study. The Journal of Bone and Joint Surgery. American Volume 2002;84-A:69–77. PMID: 11792782.
Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Revue de ChirurgieOrthopedique et Reparatrice de l’appareilMoteur 1972;58:3. PMID: 4265757
Bierbaum BE, Nairus J, Kuesis D, et al. Ceramic on ceramic bearings in total hip replacement. Clinical Orthopaedics and Related Research 2002;405:158–63. DOI: 10.1097/00003086-200212000-00019
Willmann G. Ceramic femoral head retrieval data. Clinical Orthopaedics 2000;379:22htt. ps://doi.org/10.1097/00003086-200010000-00004.
Khumrak S. Ceramic on ceramic bearings review article. Bangkok Medical Journal 2012;4:93–103.
Ramachandran M. Basic Orthopaedic Sciences: The Stan- more Guide. Euston Road, London, NW1 3BH: Edward Arnold Publishers Limited; 2007.
Burger W, Richter HG. High strength and toughness alumina matrix composites by transformation toughening and „in situ platelet reinforcement (ZPTA) – the new generation of bioceramics. Key Engineering Materials 2001;191: 545–548 195.
Kurtz SM, Ong, K. Contemporary total hip arthroplasty: Hard-on-hard bearings and highly crosslinked UHMWPE. In: Kurtz SM, editor. UHMWPE Biomaterials Handbook. 2nd ed. Burlington, MA, USA: Academic Press (Elsevier);2009. p.55-79.
Rainforth WM, Ma L. A study of Biolox (R) delta subject to water lubricated reciprocating wear. Tribol Int 2010;43(10):1872-81.
Williams S, Schepers A, Isaac G, Hardaker C, Ingham E, van der Jagt D, Breckon A, Fisher J. The 2007 Otto Aufranc Award. Ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study. Clin OrthopRelat Res 2007;465:23-32. DOI: 10.1097/blo.0b013e31814da946.
Lusty PJ, Watson A, Tuke MA, Walter WL, Walter WK, Zicat B. Wear and acetabular component orientation in third generation alumina-on-alumina ceramic bearings: an analysis of 33 retrievals. J Bone Joint Surg Br 2007;89(9):1158-64. DOI: 10.1302/0301-620x.89b9.19282.
Nevelos J, Ingham E, Doyle C, Streicher R, Nevelos A, Walter W, Fisher J. Microseparation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns. J Arthroplasty 2000;15(6):793-5. DOI: 10.1054/arth.2000.8100.
Affatato S, Traina F, Toni A. Microseparation and stripe wear in alumina-on-alumina hip implants. Int J Artif Organs 2011;34(6):506-12. DOI: 10.5301/ijao.2011.8457
Tipper JL, Hatton A, Nevelos JE, Ingham E, Doyle C, Streicher R, Nevelos AB, Fisher J. Alumina-alumina artificial hip joints. Part II: characterisation of the wear debris from in vitro hip joint simulations. Biomaterials 2002;23(16):3441-8. DOI: 10.1016/s0142-9612(02)00048-0
Fisher J, Jin Z, Tipper J, Stone M, Ingham E. Tribology of alternative bearings. Clin OrthopRelat Res 2006;453:25-34. DOI: 10.1097/01.blo.0000238871.07604.49.
Catelas I, Jacobs JJ. Biologic activity of wear particles. Instr Course Lect 2010;59:3-16. PMID:20415362.
Fisher J, Bell J, Barbour PS, Tipper JL, Matthews JB, Besong AA, Stone MH, Ingham E. A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Inst Mech Eng H 2001;215(2):127-32. DOI: 10.1243/0954411011533599
Hannouche D, Hamadouche M, Nizard R, Bizot P, Meunier A, Sedel L. Ceramics in total hip replacement. Clin OrthopRelat Res 2005;430:62-71. DOI: 10.1097/01.blo.0000149996.91974.83.
Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res 1998;41(4):600-7. DOI: 10.1002/(sici)1097-4636(19980915)41:4%3C600::aid-jbm12%3E3.0.co;2-i.
Kubo T, Sawada K, Hirakawa K, Shimizu C, Takamatsu T, Hirasawa Y. Histiocyte reaction in rabbit femurs to UHMWPE, metal, and ceramic particles in different sizes. J Biomed Mater Res 1999;45(4):363-9. DOI: 10.1002/(sici)1097-4636(19990615)45:4%3C363::aid-jbm11%3E3.0.co;2-3.
Bos I, Willmann G. Morphologic characteristics of periprosthetic tis- sues from hip prostheses with ceramic-ceramic couples: a comparative histologic investigation of 18 revision and 30 autopsy cases. Acta OrthopScand 2001;72(4):335-42. DOI: 10.1080/000164701753541970.
Bos I. Tissue reactions around loosened hip joint endoprostheses. A histological study of secondary capsules and interface membranes. Orthopade 2001;30(11):881-9. DOI: 10.1007/s001320170024.
Catelas I, Petit A, Zukor DJ, Marchand R, Yahia L, Huk OL. Induction of macrophage apoptosis by ceramic and polyethylene particles in vitro. Biomaterials 1999;20(7):625-30. DOI: 10.1016/s0142-9612(98)00214-2.
Park YS, Hwang SK, Choy WS, Kim YS, Moon YW, Lim SJ. Ceramic failure after total hip arthroplasty with an alumina-on-alumina bearing. J Bone Joint Surg Am 2006;88(4):780-7 DOI: 10.2106/jbjs.e.00618.
Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin OrthopRelat Res 2011;469(8):2262-77. DOI: 10.1007/s11999-011-1872-4.
Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 2006;77(2):177-97 DOI: 10.1080/17453670610045902.
Zywiel MG, Sayeed SA, Johnson AJ, Schmalzried TP, Mont MA. Survival of hard-on-hard bearings in total hip arthroplasty: a systematic review. Clin OrthopRelat Res 2011;469(6):1536-46. DOI: 10.1007/s11999-010-1658-0.
Petsatodis GE, Papadopoulos PP, Papavasiliou KA, Hatzokos IG, Agathangelidis FG, Christodoulou AG. Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am 2010;92(3):639-44. DOI: 10.2106/jbjs.h.01829.
Iwakiri K, Iwaki H, Minoda Y, Ohashi H, Takaoka K. Alumina inlay failure in cemented polyethylene-backed total hip arthroplasty. Clin OrthopRelat Res 2008;466(5):1186-92. DOI: 10.1007/s11999-008-0168-9.
Finkbone PR, Severson EP, Cabanela ME, Trousdale RT. Ceramic-On-Ceramic Total Hip Arthroplasty in Patients Younger Than 20 Years. J Arthroplasty 2012;27(2):213-9. DOI: 10.1016/j.arth.2011.05.022.
D'Antonio JA, Capello WN, Naughton M. Ceramic Bearings for Total Hip Arthroplasty Have High Survivorship at 10 Years. Clin OrthopRelat Res 2012;470(2):373-81. DOI: 10.1007/s11999-011-2076-7.
Boyer P, Huten D, Loriaut P, Lestrat V, Jeanrot C, Massin P. Is alumina-on-alumina ceramic bearings total hip replacement the right choice in patients younger than 50 years of age? A 7- to 15-year follow-up study. OrthopTraumatol Surg Res 2010;96(6):616-22. DOI: 10.1016/j.otsr.2010.02.013.
Lee YK, Ha YC, Yoo JJ, Koo KH, Yoon KS, Kim HJ. Alumina-on-alumina total hip arthroplasty: a concise follow-up, at a minimum of ten years, of a previous report. J Bone Joint Surg Am 2010;92(8):1715-9. DOI: 10.2106/jbjs.i.01019.
Kress AM, Schmidt R, Holzwarth U, Forst R, Mueller LA. Excellent results with cementless total hip arthroplasty and alumina-on-alumina pairing: minimum ten-year follow-up. Int Orthop 2011;35(2):195- 200. DOI: 10.1007/s00264-010-1150-1
Jeffers JR, Walter WL. Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J Bone Joint Surg Br 2012;94(6):735-45. Review. DOI: 10.1302/0301-620x.94b6.28801.
van Oldenrijk J, Sierevelt IN, Schafroth MU, Poolman RW. Design considerations in implant-related randomized trials. J Long Term Eff Med Implants 2007;17(2):153-63. DOI: 10.1615/jlongtermeffmedimplants.v17.i2.80.
Porat M, Parvizi J, Sharkey PF, Berend KR, Lombardi AV, Jr., Barrack RL. Causes of Failure of Ceramic-on-Ceramic and Metal-on-Metal Hip Arthroplasties. Clin OrthopRelat Res 2012;470(2):382-7. DOI: 10.1007/s11999-011-2161-y.
Hannouche D, Zaoui A, Zadegan F, Sedel L, Nizard R. Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop 2011; 35(2):207-13. DOI: 10.1007/s00264-010-1187-1.
Amanatullah DF, Landa J, Strauss EJ, Garino JP, Kim SH, Di Cesare PE. Comparison of surgical outcomes and implant wear between ceramic-ceramic and ceramic-polyethylene articulations in total hip arthroplasty. J Arthroplasty 2011; 26(6 Suppl):72-7. DOI: 10.1016/j.arth.2011.04.032.
Paleochorlidis IS, Badras LS, Skretas EF, Georgaklis VA, Karachalios TS, Malizos KN. Clinical outcome study and radiological findings of Zweymuller metal on metal total hip arthroplasty: a follow-up of 6 to 15 years. Hip Int 2009; 19(4):301-8. DOI: 10.1177/112070000901900402.
Santavirta S, Bohler M, Harris WH, Konttinen YT, Lappalainen R, Muratoglu O, Rieker C, Salzer M. Alternative materials to improve total hip replacement tribology. Acta OrthopScand 2003; 74(4):380- 8. DOI: 10.1080/00016470310017668.
Richards L, Brown C, Stone MH, Fisher J, Ingham E, Tipper JL. Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo. J Bone Joint Surg Br 2008; 90(8):1106-13. DOI: 10.1302/0301-620x.90b8.20737.
Catelas I, Wimmer MA. New insights into wear and biological effects of metal-on-metal bearings. Bone Joint Surg Am 2011; 93 Suppl 2:76-83. DOI: 10.2106/jbjs.j.01877.
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.